Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Infect Dis ; 73(11): e4012-e4019, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559294

ABSTRACT

BACKGROUND: We aimed to evaluate the efficacy and safety of leflunomide, an approved dihydroorotate dehydrogenase inhibitor, to treat coronavirus disease 2019 (COVID-19) patients with prolonged postsymptomatic viral shedding. METHODS: We conducted a prospective, randomized controlled, open-label trial involving hospitalized adult COVID-19 patients with prolonged polymerase chain reaction (PCR) positivity. Patients were randomly assigned to receive either leflunomide (50 mg every 12 hours, 3 consecutive times, orally; then 20 mg once daily for 8 days), in addition to nebulized interferon alpha 2a (IFN-α-2a, 3 million IU each time, twice daily for 10 days), or nebulized IFN-α-2a alone for 10 days. The primary endpoint was the duration of viral shedding. RESULTS: A total of 50 COVID-19 patients with prolonged PCR positivity were randomized into 2 groups: 26 were assigned to the leflunomide plus IFN-α-2a group, and 24 were assigned to the interferon-alone group. Treatment with leflunomide was not associated with a difference from the interferon-alone group in the duration of viral shedding (hazard ratio for negative reverse-transcription PCR, 0.70 [95% confidence interval, .391-1.256]; P = .186). In addition, the patients given leflunomide did not have a substantially shorter length of hospital stay than patients treated with interferon alone, with median durations of 29.0 (interquartile range [IQR], 19.3-47.3) days and 33.0 (IQR, 29.3-42.8) days, respectively (P = .170). Two leflunomide recipients were unable to complete the full 10-day course of administration due to adverse events. CONCLUSIONS: In COVID-19 patients with prolonged PCR positivity, no benefit in terms of the duration of viral shedding was observed with the combined treatment of leflunomide and IFN-α-2a beyond IFN-α-2a alone.


Subject(s)
COVID-19 , Adult , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dihydroorotate Dehydrogenase , Humans , Leflunomide/pharmacology , Prospective Studies , SARS-CoV-2 , Treatment Outcome , Virus Shedding
2.
Eur J Pharmacol ; 906: 174233, 2021 Sep 05.
Article in English | MEDLINE | ID: covidwho-1260717

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) is rate-limiting enzyme in biosynthesis of pyrimidone which catalyzes the oxidation of dihydro-orotate to orotate. Orotate is utilized in the biosynthesis of uridine-monophosphate. DHODH inhibitors have shown promise as antiviral agent against Cytomegalovirus, Ebola, Influenza, Epstein Barr and Picornavirus. Anti-SARS-CoV-2 action of DHODH inhibitors are also coming up. In this review, we have reviewed the safety and efficacy of approved DHODH inhibitors (leflunomide and teriflunomide) against COVID-19. In target-centered in silico studies, leflunomide showed favorable binding to active site of MPro and spike: ACE2 interface. In artificial-intelligence/machine-learning based studies, leflunomide was among the top 50 ligands targeting spike: ACE2 interaction. Leflunomide is also found to interact with differentially regulated pathways [identified by KEGG (Kyoto Encyclopedia of Genes and Genomes) and reactome pathway analysis of host transcriptome data] in cogena based drug-repurposing studies. Based on GSEA (gene set enrichment analysis), leflunomide was found to target pathways enriched in COVID-19. In vitro, both leflunomide (EC50 41.49 ± 8.8 µmol/L) and teriflunomide (EC50 26 µmol/L) showed SARS-CoV-2 inhibition. In clinical studies, leflunomide showed significant benefit in terms of decreasing the duration of viral shredding, duration of hospital stay and severity of infection. However, no advantage was seen while combining leflunomide and IFN alpha-2a among patients with prolonged post symptomatic viral shredding. Common adverse effects of leflunomide were hyperlipidemia, leucopenia, neutropenia and liver-function alteration. Leflunomide/teriflunomide may serve as an agent of importance to achieve faster virological clearance in COVID-19, however, findings needs to be validated in bigger sized placebo controlled studies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Crotonates/pharmacology , Enzyme Inhibitors/pharmacology , Hydroxybutyrates/pharmacology , Leflunomide/pharmacology , Nitriles/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Toluidines/pharmacology , Animals , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Crotonates/adverse effects , Crotonates/therapeutic use , Dihydroorotate Dehydrogenase , Drug Repositioning , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use , Humans , Hydroxybutyrates/adverse effects , Hydroxybutyrates/therapeutic use , Leflunomide/adverse effects , Leflunomide/therapeutic use , Nitriles/adverse effects , Nitriles/therapeutic use , Toluidines/adverse effects , Toluidines/therapeutic use
3.
Protein Cell ; 11(10): 723-739, 2020 10.
Article in English | MEDLINE | ID: covidwho-697126

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC50 of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Oxidoreductases/antagonists & inhibitors , Pandemics , Pneumonia, Viral/drug therapy , RNA Viruses/drug effects , Thiazoles/pharmacology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/physiology , Binding Sites/drug effects , COVID-19 , Cell Line , Coronavirus Infections/virology , Crotonates/pharmacology , Cytokine Release Syndrome/drug therapy , Dihydroorotate Dehydrogenase , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Hydroxybutyrates , Influenza A virus/drug effects , Leflunomide/pharmacology , Mice , Mice, Inbred BALB C , Nitriles , Orthomyxoviridae Infections/drug therapy , Oseltamivir/therapeutic use , Oxidoreductases/metabolism , Oxidoreductases Acting on CH-CH Group Donors , Pneumonia, Viral/virology , Protein Binding/drug effects , Pyrimidines/biosynthesis , RNA Viruses/physiology , SARS-CoV-2 , Structure-Activity Relationship , Thiazoles/therapeutic use , Toluidines/pharmacology , Ubiquinone/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL